
Title page

Hello everyone!

My name is Erin Catto and I want to thank you for coming to my tutorial.

The topic of my presentation is soft constraints.

First let me give you a little background about myself.

1



Who am I?

My first job in the game industry was writing the physics engine for Tomb 
Raider: Legend at Crystal Dynamics. The engine was used to create all the 
physics puzzles you find in the game. The same engine lives on today in Lara 
Croft: Guardian of Light and the upcoming Deus Ex 3.

After working at Crystal Dynamics, I went to Blizzard and wrote a custom 
physics engine for Diablo3 called Domino. Domino handles the destruction 
and ragdolls you see in the game. Domino is now used by multiple titles at 
Blizzard.

In my spare time I have been working on the Box2D open source engine. This 
engine is widely used inthe independent games community. Box2D is used in 
Crayon Physics, Limbo, and severaliPhonegames.

2



Teaser

Have you heard of the Open Dynamics Engine? It is called ODE for short. ODE 
is probably the first open source 3D physics engine that is suitable for games.

A few years ago I was reading the ODE manual and I came across these 
strange parameters called CFM and ERP. These parameters are used to soften 
the constraints between rigid bodies. They basically appear to be fudge 
factors.

In the manual I found these nice formulas that relate ERP and CFM to the time 
step h, spring stiffnessk, and dampingfactor c. At first, I just assumed this was 
justhackerywithout any real mathematical underpinning. But I was wrong, 
ŀƴŘ ǘƻŘŀȅ LΩƳ ƎƻƛƴƎ ǘƻ ǎƘƻǿ ȅƻǳ ǘƘŜ ǎƻƭƛŘ ƳŀǘƘ ōŜƘƛƴŘ ǘƘŜǎŜ ƳŀƎƛŎ ŦƻǊƳǳƭŀǎΦ

.ǳǘ ŦƛǊǎǘΣ ƭŜǘΩǎ ǎŜŜ ǿƘȅ ǘƘƛǎ ǘƻǇƛŎ ƛǎ ƛƳǇƻǊǘŀƴǘ ŦƻǊ ƎŀƳŜǎΦ

3



Setting

Suppose you are working on a game with vehicles. You probably want the 
vehicle to have a springy suspension. It would be nice if the vehicle could 
crash into things, such as a stack of boxes. Or you might want the vehicle to 
drive across a suspension bridge made of rigid bodies. There are many 
possibilities for combining rigid bodies and springs.

Rigid bodies and springs both have their place. Rigid bodies excel at 
representing collision and friction. Springs excel at absorbing and storing 
energy.

4



Role

So we have to simulate springs and constraints together. This seems quite 
easy. We just apply some spring forces to the rigid bodies and then let the 
constraint solver do its thing.

If all goes well, we get a nice simulation where springs, rigid bodies, and 
constraints are all interacting well together. Often this is exactly what you get.

5



What challenges do I face?

Unfortunately, springs have two big problems. First, numerical instability can 
cause stiff springs can blow up and send your simulation to Neptune.

Second, the spring stiffnessk is difficult to tune. Quite often tuning springs is a 
trial and error process that is unfit for large scale development.

In other words, springs can be a real nightmare for physics programmers and 
designers.

6



Where do I want to be?

²ƻǳƭŘƴΩǘ ƛǘ ōŜ ƴƛŎŜ ǘƻ ǳǎŜ ǎǇǊƛƴƎǎ ŀƴŘ ƴƻǘ ƘŀǾŜ ǘƻ ǿƻǊǊȅ ŀōƻǳǘ ȅƻǳǊ 
simulations going unstable?

²ƻǳƭŘƴΩǘ ƛǘ ōŜ ƴƛŎŜ ǘƻ ǇǊƻǾƛŘŜ ǎǇǊƛƴƎǎ ǘƻ ƎŀƳŜ ŘŜǎƛƎƴŜǊǎ ǘƘŀǘ ŀǊŜ Ŝŀǎȅ ǘƻ 
tune?

As you might guess, these are the goals of this presentation.

7



Call to Action

If you are concerned about spring stability and tuning, then you should 
consider using soft constraints.

What are soft constraints? You can think of them as Buddha springs. They 
behave like springs without stability problems and they integrate easily with 
rigid body constraints. Also, I will show you a method for tuning soft 
constraints easily.

{ƻ ƭŜǘΩǎ ƎŜǘ ƛƴǘƻ ǎƻƳŜ ƪŜȅ ǊŜŀǎƻƴǎ ǿƘȅ ǎƻŦǘ ŎƻƴǎǘǊŀƛƴǘǎ ŀǊŜ ŀ ƎƻƻŘ ǎƻƭǳǘƛƻƴΦ

8



1

I claimed that springs can blow up and are difficult to tune. I should back this 
ǳǇ ǎƻƳŜ ƳƻǊŜΦ [ŜǘΩǎ ŜȄǇƭƻǊŜ ƎƻƻŘ ƻƭŘ ǎǇǊƛƴƎǎ ŀ ōƛǘ ōŜŦƻǊŜ ǿŜ ŘƛǾŜ ƛƴǘƻ ǎƻŦǘ 
ŎƻƴǎǘǊŀƛƴǘǎΦ !ǎ ȅƻǳΩƭƭ ǎŜŜΣ ǳƴŘŜǊǎǘŀƴŘƛƴƎ ǎǇǊƛƴƎǎ ǿƛƭƭ ƘŜƭǇ ǳǎ ǳƴŘŜǊǎǘŀƴŘ ǎƻŦǘ 
constraints.

9



1:1

LΩǾŜ ōŜŜƴ ǿƻǊƪƛƴƎ ƻƴ ǇƘȅǎƛŎǎ ŀ ƭƻƴƎ ǘƛƳŜΣ ǎƻ ǿƘŜƴ L ƭƻƻƪ ŀǘ ŀ ƘŀǊƳƻƴƛŎ 
oscillator it is like catching up with an old friend. Sad but true.

So what is the harmonic oscillator? First we start with a mass that can only 
move in along a single axis, the x-axis in this case. Second we add a ground 
point that does not move and can support any force. Then we attach a spring 
and damper between the mass and ground.

The spring acts to maintain the position of the mass along the x-axis. The 
damper acts to reduce the velocity of the mass. By adjusting the spring and 
damper constants, we can get many different behaviors.

10



1:1:1

To understand how the harmonic oscillator moves, we need its differential 
equation. Here we have the well known equation of motion for the harmonic 
ƻǎŎƛƭƭŀǘƻǊΣ ǿƘƛŎƘ ƛǎ Ƨǳǎǘ ŀƴ ŜȄǇǊŜǎǎƛƻƴ ƻŦ bŜǿǘƻƴΩǎ ƭŀǿΣ ŦƻǊŎŜ Ŝǉǳŀƭǎ Ƴŀǎǎ ǘƛƳŜǎ 
acceleration. In this case the spring and damper are the forces.

11



1:1:2

We can understand the motion of the harmonic oscillator by introducing the 
damping ratio (zeta) and angular frequency (omega). So we have reduced the 
number of constants from 3 to 2. However, the differential equation remains 
the same.

The damping ratio is dimensionless and controls the amount of oscillation in 
the solution.

The angular frequency has units of radians per second and controls the rate of 
oscillation.

12



1:1:3

We can now look at the solutions of the differential equation for various 
damping ratios.

A small damping ratio allows the mass to oscillate back and forth unhindered.

A larger damping ratio causes the oscillation to decay to zero over time. If the 
damping ratio is less than one, then there will be some oscillation. This system 
is said to be under-damped.

Once the damping ratio hits one, all oscillation is gone. This is called critical 
damping. Larger values just slow down the mass further.

The angular frequency just controls the number of oscillations per second. We 
can get a quicker response by using a larger angular frequency.

13



1:2

The harmonic oscillator has an exact solution. Unfortunately we can rarely use 
the exact solution most scenarios that involve multiple dimensions, multiple 
bodies, and constraints.

So we have to use a numerical integrator to solve the differential equations 
for our simulations. A numerical integrator is an algorithm for taking the 
current position and velocity of the system and predicting a future position 
and velocity. Usually we make the predictions over small time steps to keep 
errors small and to provide timely transforms for rendering.

¢ƘŜǊŜ ŀǊŜ Ƴŀƴȅ ŎƘƻƛŎŜǎ ŦƻǊ ƴǳƳŜǊƛŎŀƭ ƛƴǘŜƎǊŀǘƛƻƴΦ LΩƭƭ ǎƘƻǿ ȅƻǳ ŀ ŦŜǿ 
integrators and you will see that some integrators are clearly better than 
others.

14



1:2:1

This is the classic explicit Euler integrator.Here we using it to solve the 
harmonic oscillator with zero damping.

We use a time step h and update the position and velocity step by step using 
these formulas.

It is amazing that this integrator is ever considered because it always blows up 
(when damping is zero). In the bottom figure we have a mildly stiff spring that 
is on its way to Neptune (and back again).

The reason it blows up is because it extrapolates position and velocity based 
on the current slope. This causes overshoot and the stiffer the spring, the 
more overshoot. Extrapolation is cheap, but it is wrong more often than right.

Stay far, far, away from explicit Euler.

15



1:2:3

The implicit Euler integrator uses the updated position and velocity. This 
ŎǊŜŀǘŜǎ ǎƻƳŜ ŘƛŦŦƛŎǳƭǘȅ ōŜŎŀǳǎŜ ǿŜ ŘƻƴΩǘ ƘŀǾŜ ǘƘŜ ǳǇŘŀǘŜŘ Ǉƻǎƛǘƛƻƴ ŀƴŘ 
velocity. So these equations are implicit. We have to solve them.

In this case the equations are linear, so solving them is not a big deal. In more 
general cases we are looking at multi-dimensional non-linear equations that 
are expensive to solve.

If we go through the pain of solving the implicit Euler formula, we are 
rewarded with an extremely stable solution. The larger the time step, the 
more energy is absorbed. There is no limit to the maximum time step in terms 
of stability. However, larger time steps may make solving the equations more 
difficult.

Implicit Euler is generally not used for rigid body simulation due to the 
excessive expense.

16



1:2:2

We can make asmall change to explicit Euler to get a much better result. By 
advancing the position based on the updated velocity, we get the semi-
implicit Euler integrator. We already have the updated velocity from the first 
equation, so the algorithm is fast.

As you can see, semi-implicit Euler is stable and conserves energy. 

Semi-implicit Euler will eventually blow up if you take big time steps. A general 
rule is to take at least 4 time steps per period of oscillation. For example, if 
ǘƘŜ ƻǎŎƛƭƭŀǘƛƻƴ ŦǊŜǉǳŜƴŎȅ ƛǎ слIȊΣ ǘƘŜƴ ȅƻǳ ǎƘƻǳƭŘƴΩǘ ǘŀƪŜ ǘƛƳŜ ǎǘŜǇǎ ǎƭƻǿŜǊ 
than 15Hz.

17


