Soft Constraints

Reinventing the Spring

Erin Catto

Title page

Hello everyone!

My name is Erin Catto and | want to thank you for coming to my tutorial.

The topic of my presentation is soft constraints.

First let me give you a little background about myself.

Who am I?

= PlayStation.2 <

A D
Py T\ S

Box2D (11

Who am 1?

My first job in the game industry was writing the physics engine for Tomb
Raider: Legend at Crystal Dynamics. The engine was used to create all the
physics puzzles you find in the game. The same engine lives on today in Lara
Croft: Guardian of Light and the upcoming Deus Ex 3.

After working at Crystal Dynamics, | went to Blizzard and wrote a custom
physics engine for Diablo3 called Domino. Domino handles the destruction
and ragdolls you see in the game. Domino is now used by multiple titles at
Blizzard.

In my spare time | have been working on the Box2D open source engine. This
engine is widely used ime independent games community. Box2D is used in
Crayon Physics, Limbo, and sevé&?abnegames.

The mystery of the magic formulas

CFM=1/(hk+c)
ERP=hk/(hk+c)

”In fact, ERP and CFM can be selected to have the same effect

as any desired spring and damper constants.”

Have you heard of the Open Dynamics Engine? It is called ODE for short. ODE
is probably the first open source 3D physics engine that is suitable for games.

Teaser

A few years ago | was reading the ODE manual and | came across these
strange parameters called CFM and ERP. These parameters are used to soften
the constraints between rigid bodies. They basically appear to be fudge
factors.

In the manual | found these nice formulas that relate ERP and CFM to the time

step h, spring stiffneds, anddampingfactor ¢ At first, | just assumed this was
justhackerywithout any real mathematical underpinning. But | was wrong,

FYR G2RF& LQY 3A2Ay3 (2 &aK2g¢g e2dz 0KS az2f

.dzi FANRGZ €S0GQa asSsS gKe (GKAa G2LAO Aa

Games often need to use rigid
constraints and springs

Setting

Suppose you are working on a game with vehicles. You probably want the
vehicle to have a springy suspension. It would be nice if the vehicle could
crash into things, such as a stack of boxes. Or you might want the vehicle to
drive across a suspension bridge made of rigid bodies. There are many
possibilities for combining rigid bodies and springs.

Rigid bodies and springs both have their place. Rigid bodies excel at
representing collision and friction. Springs excel at absorbing and storing
energy.

Physics programmers must combine
springs and constraints

volid SolveTimeStep ()

{
ApplySpringForces() ;
SolveConstraints();

Role

So we have to simulate springs and constraints together. This seems quite
easy. We just apply some spring forces to the rigid bodies and then let the
constraint solver do its thing.

If all goes well, we get a nice simulation where springs, rigid bodies, and
constraints are all interacting well together. Often this is exactly what you get.

Springs can blow up and are difficult
to tune

=
Il
D

What challenges do | face?

Unfortunately, springs have two big problems. First, numerical instability can
cause stiff springs can blow up and send your simulation to Neptune.

Second, the spring stiffne&ss diffialt to tune. Quite often tuning springs is a
trial and error process that is unfit for large scale development.

In other words, springs can be a real nightmare for physics programmers and
designers.

We want springs that are stable and
easy to tune

Where do | want to be?

22dzAZ RYyQid AG 0SS yAOS G2 dzaS aLINAy3Ia | yR
simulations going unstable?

22dzA RYyQid AG 0SS yAO0S G2 LINPOGARS aLINAy3a
tune?

As you might guess, these are the goals of this presentation.

constraints instead of

Call to Action

If you are concerned about spring stability and tuning, then you should
consider using soft constraints.

What are soft constraints? You can think of them as Buddha springs. They
behave like springs without stability problems and they integrate easily with
rigid body constraints. Also, | will show you a method for tuning soft
constraints easily.

{2 t830Q48 338G Ayiz2 a2YS$S 188 NBlazya sKea

Springs can blow up and are difficult
to tune

—
Il
D

| claimed that springs can blow up and are difficult to tune. | should back this

dzLJ 42YS Y2NBod [SGQa SELX 2NB 3I22R 2f R &L
O2yaiNIAyiGad '!'a &2dzQff &4SSI dzyRSNEGI yYRA
constraints.

We can understand springs by
studying the harmonic oscillator

X
2

spring k

mass m

ground damper c

1:1

LQ@S 6SSy g2N]JAy3I 2y LKeaAoa | t2y3 GAY
oscillator it is like catching up with an old friend. Sad but true.

So what is the harmonic oscillator? First we start with a mass that can only
move in along a single axis, thexis in this case. Second we add a ground
point that does not move and can support any force. Then we attach a spring
and damper between the mass and ground.

The spring acts to maintain the position of the mass along thgix The
damper acts to reduce the velocity of the mass. By adjusting the spring and
damper constants, we can get many different behaviors.

10

The harmonic oscillator has a well
known differential equation

2
df+c@+kx:0
dt dt

m

acceleration velocity position

1:1:1

To understand how the harmonic oscillator moves, we need its differential
equation. Here we have the well known equation of motion for the harmonic

250AfEIG2NE 6KAOK A& 2dz&id Iy SELINB&a&AZY

acceleration. In this case the spring and damper are the forces.

11

Replace c and k with the damping
ratio and angular frequency

2
d—f+2§w@+w2x=0
dt dt

20 = — W = —

1:1:2

We can understand the motion of the harmonic oscillator by introducing the
damping ratio (zeta) and angular frequency (omega). So we have reduced the
number of constants from 3 to 2. However, the differential equation remains

the same.

The damping ratio is dimensionless and controls the amount of oscillation in

the solution.

The angular frequency has units of radians per second and controls the rate of

oscillation.

12

The damping ratio and frequency
describe the behavior

¢<1

¢>1

1:1:3

We can now look at the solutions of the differential equation for various
damping ratios.

A small damping ratio allows the mass to oscillate back and forth unhindered.

A larger damping ratio causes the oscillation to decay to zero over time. If the
damping ratio is less than one, then there will be some oscillation. This system
is said to be undedamped.

Once the damping ratio hits one, all oscillation is gone. This is called critical
damping. Larger values just slow down the mass further.

The angular frequency just controls the number of oscillations per second. We
can get a quicker response by using a larger angular frequency.

13

Choose your numerical integrator
wisely

1:2

The harmonic oscillator has an exact solution. Unfortunately we can rarely use
the exact solution most scenarios that involve multiple dimensions, multiple
bodies, and constraints.

So we have to use a numerical integrator to solve the differential equations
for our simulations. A numerical integrator is an algorithm for taking the
current position and velocity of the system and predicting a future position
and velocity. Usually we make the predictions over small time steps to keep
errors small and to provide timely transforms for rendering.

CKSNBE INB Ylye OK2A0S&a FT2NJ ydzYSNRAOIt Ay
integrators and you will see that some integrators are clearly better than
others.

14

The explicit Euler integrator is fast
but unstable R

1

X, = x + hy, ;

2
v, = v, — hox, : o

1:2:1

This is the classic explicit Euler integraktere we using it to solve the
harmonic oscillator with zero damping.

We use a time step h and update the position and velocity step by step using
these formulas.

It is amazing that this integrator is ever considered because it always blows up
(when damping is zero). In the bottom figure we have a mildly stiff spring that
is on its way to Neptune (and back again).

The reason it blows up is because it extrapolates position and velocity based
on the current slope. This causes overshoot and the stiffer the spring, the
more overshoot. Extrapolation is cheap, but it is wrong more often than right.

Stay far, far, away from explicit Euler.

15

The implicit Euler integrator is slow
but unconditionally stable . —---

X, = X, + hv,

2
V—) — Vl - ha) x2 2 £ 100

Implicit Euler, zeta =0, omega = 1

time

1:2:3

The implicit Euler integrator uséise updated position and velocity. This
ONBIlI G4Sa a42YS RAFFAOdA G& 0SOlFdzaS 6S R2y(
velocity. So these equations are implicit. We have to solve them.

In this case the equations are linear, so solving them is not a big deal. In more
general cases we are looking at nualimensional nodinear equations that
are expensive to solve.

If we go through the pain of solving the implicit Euler formula, we are
rewarded with an extremely stable solution. The larger the time step, the
more energy is absorbed. There is no limit to the maximum time step in terms
of stability. However, larger time steps may make solving the equations more
difficult.

Implicit Euler is generally not used for rigid body simulation due to the
excessive expense.

16

1:2:2

We can make amall change to explicit Euler to get a much better result. By
advancing the position based on the updated velocity, we get the-semi
implicit Euler integrator. We already have the updated velocity from the first
equation, so the algorithm is fast.

As you can see, seamplicit Euler is stable and conserves energy.

Semiimplicit Euler will eventually blow up if you take big time steps. A general
rule is to take at least 4 time steps per period of oscillation. For example, if
GKS 2380AfttflIGA2Y FTNBldzSyoOe A& cnllzx
than 15Hz.

0KSYy

17

